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SUMMARY

We deal with 2D �ows of incompressible viscous �uids with high Reynolds numbers. Galerkin Least
Squares technique of stabilization of the �nite element method is studied and its modi�cation is de-
scribed. We present a number of numerical results obtained by the developed method, showing its
contribution to solving �ows with high Reynolds numbers. Several recommendations and remarks are
included. We are interested in positive as well as negative aspects of stabilization, which cannot be
divorced. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The idea of stabilizing the FEM is not quite new in comparison to the history of FEM
itself. Many researchers have been involved in this area and have already presented many
techniques and results. Let us brie�y review several publications related to the approach that
we present in this paper. Hughes et al. [1] presented the stable Petrov–Galerkin formulation
of the Stokes problem in 1986. Douglas and Wang [2] introduced another stabilized method
for the Stokes problem in 1988. In the same year; Hughes et al. [3] presented SUPG and
GLS stabilized �nite element methods for the advective–di�usive equation. Their ideas were
extended to the Navier–Stokes equations and completed by Franca and Frey [4], Franca and
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Hughes [5], Franca and Madureira [6], and Franca et al. [7]. In 1991, Tezduyar presented
pressure-stabilizing/Petrov–Galerkin (PSPG) method, another stabilization technique for in-
compressible viscous �uids [8]. Work of Lube and his co-workers (e.g. Reference [9]) can
be mentioned as a recent research in the stabilization of the FEM for �uid dynamics.
Mainly the works of Franca and Hughes provide the theoretical basis for the presented

research. We modify the Galerkin Least-Squares (GLS) method introduced in Reference [3]
and solve �ows with markably higher Reynolds numbers than without stabilization. We present
several results of numerical experiments which show the impact of this stabilization on the
solution and people who use stabilization techniques should be aware of it.

2. MODEL PROBLEM

Let � be an open bounded domain in R2 �lled with an incompressible viscous �uid, and let
� be its boundary. Isothermal �ow of such �uid is governed by the following Navier–Stokes
system of partial di�erential equations (nonconservative form)

• Unsteady �ow
@u
@t
+ (u · ∇)u − �	u+∇p= f in �× [0; T ] (1)

∇ · u=0 in �× [0; T ] (2)

u= g on �g × [0; T ] (3)

−�(∇u)n+pn= 0 on �h × [0; T ] (4)

u= u0 in �; t=0 (5)

• Steady �ow
(u · ∇)u − �	u+∇p= f in � (6)

∇ · u=0 in � (7)

u=g on �g (8)

−�(∇u)n+pn= 0 on �h (9)

where

• t denotes time variable,
• u=(u1; u2)T denotes the vector of �ow velocity,
• p denotes the pressure divided by the density,
• � denotes the kinematic viscosity of the �uid supposed to be constant,
• f denotes the density of volume forces per mass unit,
• �g and �h are two subsets of � satisfying 
�= 
�g ∪ 
�h; �R1 (�g ∩ �h)=0,
• n denotes an outer normal vector to the boundary � with unit length,
• g is a given function satisfying ∫

� g · n d�=0 in the case of �=�g,
• u0 is a given �ow �eld satisfying ∇ · u0 = 0.
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3. APPROXIMATION OF THE PROBLEM BY FEM

First we derive the weak formulation of the Navier–Stokes equations (1)–(5) in the manner
of mixed methods, i.e. usage of di�erent function spaces of test functions for the momentum
equation and for the continuity equation (cf. Reference [10]). Let us de�ne vector function
spaces Vg and V by

Vg = {v=(v1; v2)T | v∈ [H 1(�)]2;Tr vi= gi; i=1; 2}

V = {v=(v1; v2)T | v∈ [H 1
0 (�)]

2}

where H 1(�) and H 1
0 (�) are the usual Sobolev spaces. Let additionally L2(�) be the space of

square integrable functions on �, and let L2(�)=R be the space of functions in L2(�) ignoring
an additive constant.
Then the weak unsteady Navier–Stokes problem consists of �nding u(t)= (u1(t); u2(t))T

∈Vg and p(t)∈L2(�)=R satisfying for any t ∈ [0; T ]∫
�

@u
@t

· v d� +
∫
�
(u · ∇)u · v d� + �

∫
�

∇u : ∇v d�−
∫
�
p∇ · v d�=

∫
�
f · v d� (10)

∫
�
 ∇ · u d�= 0 (11)

u − ug ∈ V (12)

for all v∈V and  ∈L2(�), where ug ∈Vg is a representation of the Dirichlet boundary con-
dition g in (3). We denote

∇u : ∇v= @u1
@x1

@v1
@x1

+
@u1
@x2

@v1
@x2

+
@u2
@x1

@v2
@x1

+
@u2
@x2

@v2
@x2

For the steady problem (6)–(9), we obtain similar formulation as (10)–(12) without the
term with the time derivative in (10) and dependence on time.
Let us divide the domain � into N elements TK of a triangulation Th of shape regular

family, such that
⋃N

K=1

TK = 
�; �R2 (TK ∩ TL)=0; K �=L. Let hK mean the largest distance in

element TK .
In what follows, we consider Hood–Taylor �nite elements P2P1 and=or Q2Q1, which satisfy

Babu�ska–Brezzi stability condition (inf–sup condition) (cf. Reference [11]). Their application
leads to the �nal approximation on the domain � satisfying uh ∈Vgh and ph ∈Qh where

Vgh = {vh=(vh1 ; vh2)T ∈ [C( 
�)]2; vhi |TK ∈R2(TK); K =1; : : : ; N; i=1; 2; vh= g

in nodes on �g}

Qh = { h ∈C( 
�);  h |TK ∈R1(TK); K =1; : : : ; N}
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where

Rm(TK)=

{
Pm(TK) if TK is a triangle

Qm(TK) if TK is a quadrilateral

and C( 
�) denotes the space of continuous functions on 
�. Additionally, we introduce the
space

Vh = {vh=(vh1 ; vh2)T ∈ [C( 
�)]2; vhi |TK ∈R2(TK); K =1; : : : ; N; i=1; 2; vh= 0

in nodes on �g}

Since these function spaces satisfy Vgh ⊂Vg, Vh ⊂V , and Qh ⊂L2(�)=R, we can introduce
semidiscrete unsteady Navier–Stokes problem:
Find uh(t)∈Vgh; t ∈ [0; T ] and ph(t)∈Qh; t ∈ [0; T ] satisfying for any t ∈ [0; T ]∫

�

@uh
@t

· vh d� +
∫
�
(uh · ∇)uh · vh d� + �

∫
�

∇uh : ∇vh d�

−
∫
�
ph∇ · vh d�=

∫
�
f · vh d�; ∀vh ∈Vh (13)

∫
�
 h∇ · uh d�= 0; ∀ h ∈Qh (14)

uh − ugh ∈ Vh (15)

4. STABILIZED FORMULATION

Following ideas of Hughes and Franca [3, 6], we apply the GLS stabilizing technique with
two modi�cations:

1. Stabilization of the continuity equation is not considered. For this reason, we call the
technique semiGLS (abbreviated sGLS). Since most problems are caused by the advec-
tive term, we �nd stabilization of it as most important. We performed several experiments
with stabilization of the continuity equation applied, but the results were disastrous.

2. The algorithm is derived for the Navier–Stokes equations with Laplacian in the di�usive
term instead of whole symmetric part of the velocity gradient. This formulation makes
the derivations much simpler, therefore less mistakes can be made and stay undetected.

Applying stabilization to the momentum equation (13) and adding the continuity
equation (14), we introduce the stabilized problem:
Find uh(t)∈Vgh; t ∈ [0; T ] and ph(t)∈Qh; t ∈ [0; T ] satisfying for any t ∈ [0; T ]

BsGLS(uh; ph; vh;  h) = LsGLS(vh;  h); ∀vh ∈Vh; ∀ h ∈Qh (16)

uh − ugh ∈ Vh (17)
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where

BsGLS(uh; ph; vh;  h)≡
∫
�

@uh
@t

· vh d� +
∫
�
(uh · ∇)uh · vh d�

+�
∫
�

∇uh : ∇vh d�−
∫
�
ph∇ · vh d� +

∫
�
 h∇ · uh d�

+
N∑

K=1

∫
TK

[
@uh
@t
+ (uh · ∇)uh − �	uh +∇ph

]

·� [(uh · ∇)vh − �	vh +∇ h] d�

LsGLS(vh;  h)≡
∫
�
f · vh d� +

N∑
K=1

∫
TK
f · �[(uh · ∇)vh − �	vh +∇ h] d�

Here � is positive stabilization parameter. Modifying formulas from Reference [6], we compute
it as

�=
�(ReK(x))√
�K |u(x)|2

(18)

where

ReK(x) =
|u(x)|2
4
√
�K�

�(ReK(x)) =

{
ReK(x); 06ReK(x)¡ 1

1; ReK(x)¿1

�K = max
0�=v∈ (R2(TK )=R)2

‖	v‖20; TK
‖∇v‖20; TK

|u(x)|2 =
(

2∑
i=1

|ui(x)|2
)1=2

Parameter �K is computed for each element as the largest eigenvalue of the problem

(	w;	v)= �K(∇w;∇v) ∀v∈ (R2(TK)=R)2 (19)

This is done once, before entering the main computational loop of the Newton method, since
�K is not a function of velocity and depends only on the computational mesh through space
functions on element K .
Stabilized formulation for the steady problem (6)–(9) is derived analogously and is simpler.
Let us investigate the dependence of � on local Reynolds number ReK(x) given by (18).

We can observe that ReK(x) is a linear function of |u(x)|2 for constant viscosity on element
K , i.e.

ReK(x)=C1|u(x)|2 (20)

where C1 = 1=(4
√
�K�).

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1001–1016
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Figure 1. Plot of �(ReK).

Substituting (20) in (18) we get

�(ReK(x);x)=

⎧⎪⎨
⎪⎩

C2; 06ReK(x)¡ 1

C3
|u(x)|2 =

C2
ReK(x)

; ReK(x)¿1

where C2 = 1=(4�K�) and C3 = 1=
√
�K , cf. Figure 1.

5. IMPLEMENTATION OF THE METHOD

In our implementation, we employ the implicit Euler method (also known as the backward
di�erence method) for time discretization of the problem (16)–(17), i.e. time derivative is
substituted as

@uh
@t

≈ un+1h − unh
#

where # denotes a constant time step. This leads to fully implicit method for �nding uh in
(n+1)th time layer. Resulting system of nonlinear equations is solved by the Newton method
in each time layer, employing direct solver for solving the linearized system in each iteration.

6. NUMERICAL EXPERIMENTS

The method was tested on several problems for veri�cation and to review its behaviour.
Results obtained by the algorithm are marked as semiGLS algorithm results.
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Figure 2. Streamlines by the Newton method without stabilization (left) and by the semiGLS algorithm
(right), Re=10 000, mesh 32× 32.

6.1. Steady solution of lid driven cavity

Popular benchmark problem for testing numerical schemes is the ‘lid driven cavity’. Compu-
tational domain is of square shape with unit length of side. Dirichlet boundary conditions are
prescribed on the boundary: value of horizontal velocity is prescribed on the upper side, zero
boundary conditions on the rest of the boundary representing a wall.
Many solutions of this problem were presented by various authors. Here are some repre-

sentatives: in Reference [12], solutions for Reynolds numbers 1000, 3200, and 5000 obtained
on nonuniform grid of approximately 8800 elements are presented; in Reference [9], result for
Reynolds number 7500 on quasi-uniform mesh of 96×96 elements is presented; solutions for
Reynolds number 10 000 obtained by several methods on the mesh of 64 × 64 elements are
published in Reference [13], and in Reference [7], outstanding results for Reynolds number
500 000 on the mesh of 30× 30 elements are presented.
Solution by the developed algorithm was performed on three uniform meshes of quadrilateral

elements—of 32×32 (1024) elements, of 64×64 (4096) elements, and of 128×128 (16 384)
elements.
To observe the e�ect of stabilization, solutions obtained by the Newton method without

stabilization together with solutions computed by the semiGLS algorithm for Reynolds num-
ber 10 000 on all three meshes are presented in Figures 2–4. Moreover, we can review the
sensitivity to the �neness of the computational mesh in these �gures.
We can observe, that streamlines are not encircled for the GLS method showing the loss

of accuracy induced by the stabilization. This defect is decreasing with re�ning of the mesh.
We evaluate the e�ect of stabilization as the di�erence of solutions obtained with and

without stabilization by

��=

√∑n
i=1(�sGLSi − �Newtoni)

2∑n
i=1 �

2
Newtoni

× 100 (%) (21)
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Figure 3. Streamlines by the Newton method without stabilization (left) and by the semiGLS algorithm
(right), Re=10 000, mesh 64× 64.
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Figure 4. Streamlines by the Newton method without stabilization (left) and by the semiGLS algorithm
(right), Re=10 000, mesh 128× 128.

where � represents in turn uh1, uh2 and ph, n denotes number of nodes with � given,
�sGLS denotes the solution obtained by the semiGLS algorithm and �Newton denotes the
solution obtained by the Newton method without stabilization. Results are summarized
in Table I.
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Table I. Di�erences between solutions obtained with
and without stabilization.

Mesh 32×32 64×64 128×128
�uh1 (%) 41.69 39.07 21.42
�uh2 (%) 70.81 49.12 22.24
�ph (%) 197.90 137.10 42.82
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Figure 5. Streamlines (left) and pressure contours (right) by the semiGLS algorithm
on the mesh 128× 128; Re=100 000.

Di�erences of solutions obtained by the semiGLS method from those obtained by the
Newton method computed by (21) are big for the problem of cavity.
To extend results to higher Reynolds numbers, solution for Re=100 000 on the mesh

128× 128 is presented in Figure 5.
Although the continuation method was applied to achieve higher Reynolds numbers, we

detected limits of convergence of the Newton method for all three meshes. We observed,
that on the mesh 32 × 32, we were not able to get results above Re ≈ 28 000, on the mesh
64×64 above Re ≈ 50 000, and on the mesh 128×128 above Re ≈ 120 000. For comparison,
such limit was around Re ≈ 12 500 on the mesh 32× 32 for the method without stabilization
(�=0).
Another interesting e�ect was observed during the computations. Since it is known that

stabilized methods are in general, sensitive to stabilization parameters, we tried to modify the
computed parameter � by a quotient 0.7–1.5. This improved the convergence, and we were
able to reach higher Reynolds numbers, e.g. Re=70000 on the mesh 64× 64 elements.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1001–1016
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Figure 6. Geometry of the channel.

Figure 7. Streamlines in the channel by the Newton method without stabilization (left) and streamlines
by the semiGLS algorithm (right), Re=1000.

Table II. Di�erences between solutions obtained with
and without stabilization.

Mesh Channel (Figure 6)

�uh1 (%) 0.0718
�uh2 (%) 2.7202
�ph (%) 0.5139

6.2. Steady solution of �ow in channel with sudden extension of diameter

Steady �ow in 2D channel with abruptly extended diameter (Figure 6) is another testing
problem. This problem is complicated due to singularities of solution in the vicinity of non-
convex internal corners. The aspect of suitable mesh generation for such problems is studied in
References [14, 15]. We compare solutions with and without semiGLS stabilization in this pa-
per. Streamlines are presented in Figure 7 for Reynolds number 1000. For the symmetry of
the problem, solution is found only on the upper half of the section. Di�erences between
solutions computed by (21) are listed in Table II. Parabolic horizontal velocity distribution is
prescribed on the in�ow (left) part of the boundary, ‘do nothing’ condition is considered on
the out�ow (right) part of it, zero velocity is prescribed on the upper part of the boundary
representing wall with ‘no slip’ and symmetry is considered on the lower part of it (see
Reference [15] for details).
Additionally, we present streamlines, plots of velocities and pressure for Reynolds number

80 000 in Figures 8 and 9.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1001–1016
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Figure 8. Streamlines (left) and plot of velocity uh1 (right) by the semiGLS algorithm, Re=80 000.

Figure 9. Plot of velocity uh2 (left) and pressure (right) by the semiGLS algorithm, Re=80 000.

Figure 10. Computational mesh for NACA 0012 problem, angle of incidence of 34◦.

6.3. Unsteady solution of �ow past NACA 0012 airfoil

Unsteady �ow past NACA 0012 airfoil was investigated as a more practical application.
Results of this problem for angle of incidence of 34◦ and Reynolds number 1000 obtained
by the unconditionaly stable projection FEM were presented by Guermond and Quartapelle in

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1001–1016
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Figure 11. Streamlines by the semiGLS algorithm (left) and by Guermond and
Quartapelle [12] (right), t=1:6 s, Re=1000.

Figure 12. Pressure contours by the semiGLS algorithm (left) and by Guermond and
Quartapelle [12] (right), t=1:6 s, Re=1000.

Reference [12]. In Figures 11–15, these results are compared to ours obtained by the semiGLS
algorithm. Streamlines and pressure contours for the problem with Reynolds number 100 000
in several time layers are presented in Figures 16–19. The computational mesh is shown
in Figure 10. It contains 6220 elements, 18 478 nodes, and 43 085 degrees of freedom. We
consider zero initial condition, unit horizontal velocity on the left part of the boundary and
‘do nothing’ boundary condition on the rest of it. Time step sizes for simulation for Reynolds
number 1000 are 0.01 s and for Reynolds number 100 000 are 0.005 s (see Reference [15] for
details).

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1001–1016
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Figure 13. Streamlines by the semiGLS algorithm (left) and by Guermond and
Quartapelle [12] (right), t=2:6 s, Re=1000.

Figure 14. Streamlines by the semiGLS algorithm (left) and by Guermond and
Quartapelle [12] (right), t=3:6 s, Re=1000.

Figure 15. Streamlines by the semiGLS algorithm (left) and by Guermond and
Quartapelle [12] (right), t=6:0 s, Re=1000.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1001–1016
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Figure 16. Streamlines (left) and pressure contours (right) by the semiGLS
algorithm, t=1:6 s, Re=100 000.

Figure 17. Streamlines (left) and pressure contours (right) by the semiGLS
algorithm, t=2:6 s, Re=100 000.

Figure 18. Streamlines (left) and pressure contours (right) by the semiGLS
algorithm, t=3:6 s, Re=100 000.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1001–1016
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Figure 19. Streamlines (left) and pressure contours (right) by the semiGLS
algorithm, t=6:0 s, Re=100 000.

7. CONCLUSION

The motivation for using stabilization techniques comes from the desire of solving problems
for higher Reynolds numbers.
We achieved our main goal—to develop an applicable algorithm based on the FEM equipped

with stabilization. The algorithm has been veri�ed by several numerical experiments and per-
formed contributive results. More about the algorithm and other numerical results can be
found in Reference [15].
On the problem of cavity for Re=10000 we show, that applying stabilization induces loss

of accuracy. Distortion of solution could be signi�cant for some problems (Figures 2–4 and
Table I), but could also play negligible role for other problems (Figure 7 and Table II).
It was observed that presented stabilization technique leads to improvement of stability of

the Newton method to approximately ‘double’ Reynolds number. Similar e�ect was observed
for the re�nement of the computational mesh with half element size.
This results in recommendation, that for solving �ows for higher Reynolds numbers,

applying of stabilization techniques should be e�ciently combined with a suitable re�nement.
Stabilization should be applied carefully and reliable tool for error estimation for semiGLS
technique is still desired.
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